Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 4-[(1-methylcyclopent-3-en-1-yl)carbonyl]benzoate

Chao Yang, Wujiong Xia,* Xiao Zhang, Bing Li and Baoquan Gou

Research Academy of Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China Correspondence e-mail: xiawj@hit.edu.cn

Received 19 October 2007; accepted 23 October 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.116; data-to-parameter ratio = 16.1.

In the title molecule, $C_{15}H_{16}O_3$, the non-H atoms of the benzoate group, the *p*-carbonyl, the attached ring C and its substituent methyl group lie on a mirror plane bisecting the five-membered ring, in which the C==C double bond is *cis* configured. Owing to symmetry considerations, the dihedral angle between the aromatic and the cyclopentyl rings is exactly 90°. There is an intermolecular C-H···O hydrogen bond, which links molecules into a one-dimensional supramolecular chain along the *c* axis in a head-to-tail fashion. These supramolecular chains, in turn, interact with each other along the *b* axis through weak π - π contacts between neighboring aromatic rings [$Cg \cdots Cg$ and interplanar distances of 3.70 (1) and 3.33 (1) Å].

Related literature

For related literature, see: Braga *et al.* (2004); Xia *et al.* (2005, 2006); Yang *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} C_{15} {\rm H}_{16} {\rm O}_{3} \\ M_{r} = 244.28 \\ {\rm Orthorhombic, $Pnma$} \\ a = 16.6215 (6) {\rm \mathring{A}} \\ b = 6.6520 (2) {\rm \mathring{A}} \\ c = 11.5581 (5) {\rm \mathring{A}} \end{array}$

 $V = 1277.94 (8) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 173 (2) K 0.54 \times 0.12 \times 0.06 mm Data collection

Nonius KappaCCD diffractometer1656 independent reflectionsAbsorption correction: none1290 reflections with $I > 2\sigma(I)$ 22416 measured reflections $R_{int} = 0.043$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	103 parameters
$vR(F^2) = 0.116$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
656 reflections	$\Delta \rho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13A\cdotsO1^{i}$	0.96	2.45	3.339 (2)	153
Symmetry code: (i) x, y.	z - 1.			

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO–SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

CY and WX are grateful for financial support from the New Century Talent Program of the Chinese Ministry of Education.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2118).

References

Braga, D., Chen, S., Filson, H., Maini, L., Netherton, M. R., Patrick, B. O., Scheffer, J. R., Scott, C. & Xia, W. (2004). J. Am. Chem. Soc. 126, 3511–3520.

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xia, W., Yang, C., Patrick, B. O., Scheffer, J. R. & Scott, C. (2005). J. Am. Chem. Soc. 127, 2725–2730.
- Xia, W., Yang, C., Scheffer, J. R. & Patrick, B. O. (2006). CrystEngComm, 8, 388–390.
- Yang, C., Xia, W., Scheffer, J. R., Botoshansky, M. & Kaftory, M. (2005). Angew. Chem. Int. Ed. 44, 5087–5089.

supplementary materials

Acta Cryst. (2007). E63, o4729 [doi:10.1107/S1600536807052658]

Methyl 4-[(1-methylcyclopent-3-en-1-yl)carbonyl]benzoate

C. Yang, W. Xia, X. Zhang, B. Li and B. Gou

Comment

As one aspect of the green chemistry, photochemistry has attracted widespread interest and attention. During the course of our investigation on solid-state organic photochemistry (Braga *et al.*, 2004; Xia *et al.*, 2005; Xia *et al.*, 2006, Yang *et al.*, 2005), the title compound C~15~H~16Õ~3~ (I) was synthesized and its crystal structure is presented in this paper.

The asymmetric unit of the title compound contains sixteen non-hydrogen atoms of which two carbon lie in general position and the remaining thirteen plus two carbonyl and one ester O atoms lie onto a mirror plane (Fig. 1). Geometric parameters are in the usual ranges. The C=C double bond in the pentagonal ring is *cis* configured, and the deviation of C3 from the plane defined by C2, C1, C1ⁱⁱ and C2ⁱⁱ [symmetry code (ii) x, 0.5 - y, z] is 0.28 (1) Å. Due to symmetry considerations, the dihedral angle between the aromatic and the cyclopentyl rings is exactly 90°. As shown in Fig. 2 and Table 1, there is an intermolecular H-bond between C13 and O1ⁱ [symmetry code: (i) x, y, z - 1] which leads to a 1-D supramolecular chain along *c*-axis in a head-to-tail fashion. These supramolecular chains, in turn, interact with each other along the *b*-axis through weak π - π contacts between neighboring aromatic rings, with *Cg*···*Cg* and interplanar distances of 3.70 (1) and 3.33 (1) Å (Fig. 3).

Experimental

The preparation of the titled compound was conducted by the reaction of commercially available compounds, methyl 3cyclopene carboxylate with LDA/MeI, reduction with LiAlH₄ and oxidation by pyridinium chlorochromate (PCC). After reaction with methyl 4-carboxylate phenylmagnesium bromide at -40° C, the target compound was obtained by oxidation with PCC.

Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for Csp^2 and 0.96 Å for methyl. $U_{iso}(H) = xUeq(C)$, where x = 1.2 for Csp^2 and 1.5 for methyl.

Figures

Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 50% probability level [symmetry code: (ii) x, 1/2 - y, z].

Fig. 2. The one-dimensional supramolecular chain along *c*-axis linked by intermolecular C—H···O bonds [symmetry code: (i) x, y, z = 1].

Fig. 3. A couple of neighboring chains showing the weak π - π contacts between interleaving aromatic rings linking them along the *b*-axis

Methyl 4-[(1-methylcyclopent-3-en-1-yl)carbonyl]benzoate

Crystal data	
C ₁₅ H ₁₆ O ₃	Z = 4
$M_r = 244.28$	$F_{000} = 520$
Orthorhombic, Pnma	$D_{\rm x} = 1.270 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 2ac 2n	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 16.6215 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 6.6520 (2) Å	T = 173 (2) K
c = 11.5581 (5) Å	Block, colourless
V = 1277.94 (8) Å ³	$0.54 \times 0.12 \times 0.06 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	1656 independent reflections
Radiation source: fine-focus sealed tube	1290 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
Detector resolution: 10 pixels mm ⁻¹	$\theta_{\text{max}} = 28.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 2.2^{\circ}$
ϕ and $\ w$ scans	$h = -21 \rightarrow 21$
Absorption correction: none	$k = -8 \rightarrow 8$
22416 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0595P)^2 + 0.2712P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
1656 reflections	$\Delta \rho_{max} = 0.27 \text{ e } \text{\AA}^{-3}$
103 parameters	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Ex

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.82779 (7)	0.3482 (2)	0.16325 (12)	0.0432 (4)	
H1	0.8704	0.4256	0.1362	0.052*	
C2	0.75151 (7)	0.4356 (2)	0.21171 (12)	0.0426 (4)	
H2A	0.7191	0.4960	0.1512	0.051*	
H2B	0.7631	0.5363	0.2701	0.051*	
C3	0.70802 (10)	0.2500	0.26576 (15)	0.0365 (4)	
C4	0.72151 (14)	0.2500	0.39724 (19)	0.0798 (10)	
H4A	0.7782	0.2500	0.4132	0.120*	
H4B	0.6974	0.1322	0.4303	0.120*	0.50
H4C	0.6974	0.3678	0.4303	0.120*	0.50
C5	0.61758 (10)	0.2500	0.24182 (14)	0.0274 (4)	
C6	0.58474 (9)	0.2500	0.11956 (13)	0.0226 (3)	
C7	0.63221 (9)	0.2500	0.01907 (14)	0.0263 (4)	
H7	0.6880	0.2500	0.0251	0.032*	
C8	0.59613 (9)	0.2500	-0.08943 (14)	0.0265 (4)	
H8	0.6279	0.2500	-0.1556	0.032*	
C9	0.51238 (9)	0.2500	-0.09965 (13)	0.0222 (3)	
C10	0.46505 (9)	0.2500	-0.00022 (13)	0.0237 (3)	
H10	0.4093	0.2500	-0.0066	0.028*	
C11	0.50064 (9)	0.2500	0.10786 (14)	0.0242 (3)	
H11	0.4685	0.2500	0.1737	0.029*	
C12	0.47066 (10)	0.2500	-0.21404 (13)	0.0255 (3)	
C13	0.48394 (13)	0.2500	-0.41695 (15)	0.0426 (5)	
H13A	0.5245	0.2500	-0.4760	0.064*	
H13B	0.4510	0.3678	-0.4248	0.064*	0.50
H13C	0.4510	0.1322	-0.4248	0.064*	0.50
01	0.56999 (7)	0.2500	0.32202 (10)	0.0398 (3)	
O2	0.39814 (7)	0.2500	-0.22520 (10)	0.0359 (3)	
O3	0.52206 (7)	0.2500	-0.30386 (9)	0.0336 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0253 (6)	0.0566 (8)	0.0478 (8)	-0.0081 (6)	-0.0026 (5)	-0.0008 (7)
C2	0.0302 (6)	0.0424 (8)	0.0552 (8)	-0.0084 (6)	-0.0042 (6)	-0.0145 (6)
C3	0.0266 (8)	0.0542 (12)	0.0287 (9)	0.000	-0.0049 (7)	0.000
C4	0.0403 (12)	0.165 (3)	0.0340 (11)	0.000	-0.0146 (9)	0.000
C5	0.0280 (8)	0.0281 (8)	0.0261 (8)	0.000	-0.0006 (6)	0.000
C6	0.0228 (7)	0.0197 (7)	0.0254 (7)	0.000	0.0010 (6)	0.000
C7	0.0179 (7)	0.0301 (8)	0.0309 (8)	0.000	0.0012 (6)	0.000
C8	0.0229 (7)	0.0302 (8)	0.0263 (8)	0.000	0.0060 (6)	0.000
C9	0.0222 (7)	0.0176 (7)	0.0266 (8)	0.000	0.0004 (6)	0.000
C10	0.0183 (7)	0.0206 (8)	0.0322 (8)	0.000	0.0025 (6)	0.000
C11	0.0224 (7)	0.0224 (8)	0.0277 (8)	0.000	0.0058 (6)	0.000
C12	0.0285 (8)	0.0200 (8)	0.0280 (8)	0.000	-0.0011 (6)	0.000
C13	0.0543 (12)	0.0505 (12)	0.0230 (8)	0.000	-0.0031 (8)	0.000
01	0.0332 (7)	0.0607 (9)	0.0256 (6)	0.000	0.0036 (5)	0.000
O2	0.0262 (6)	0.0459 (8)	0.0355 (7)	0.000	-0.0061 (5)	0.000
O3	0.0352 (7)	0.0415 (7)	0.0242 (6)	0.000	0.0016 (5)	0.000

Geometric parameters (Å, °)

C1—C1 ⁱ	1.307 (3)	С7—С8	1.390 (2)
C1—C2	1.5030 (18)	С7—Н7	0.9300
C1—H1	0.9300	C8—C9	1.397 (2)
C2—C3	1.5612 (17)	С8—Н8	0.9300
C2—H2A	0.9700	C9—C10	1.393 (2)
C2—H2B	0.9700	C9—C12	1.493 (2)
C3—C5	1.529 (2)	C10—C11	1.382 (2)
C3—C4	1.536 (3)	C10—H10	0.9300
C3—C2 ⁱ	1.5612 (17)	C11—H11	0.9300
C4—H4A	0.9600	C12—O2	1.2123 (19)
C4—H4B	0.9600	C12—O3	1.3444 (19)
C4—H4C	0.9600	C13—O3	1.453 (2)
C5—O1	1.219 (2)	С13—Н13А	0.9600
C5—C6	1.515 (2)	С13—Н13В	0.9600
C6—C7	1.404 (2)	C13—H13C	0.9600
C6—C11	1.404 (2)		
C1 ⁱ —C1—C2	112.76 (8)	C11—C6—C5	116.65 (13)
C1 ⁱ —C1—H1	123.6	C8—C7—C6	120.25 (13)
C2—C1—H1	123.6	С8—С7—Н7	119.9
C1—C2—C3	103.51 (12)	С6—С7—Н7	119.9
C1—C2—H2A	111.1	С7—С8—С9	120.41 (14)
С3—С2—Н2А	111.1	С7—С8—Н8	119.8
C1—C2—H2B	111.1	С9—С8—Н8	119.8
С3—С2—Н2В	111.1	C10—C9—C8	119.54 (14)
H2A—C2—H2B	109.0	C10—C9—C12	117.93 (13)

C5—C3—C4	108.82 (15)	C8—C9—C12		122.53 (14)
C5—C3—C2	112.52 (9)	C11-C10-C9		120.27 (13)
C4—C3—C2	109.16 (10)	C11-C10-H10		119.9
C5—C3—C2 ⁱ	112.52 (9)	С9—С10—Н10		119.9
C4—C3—C2 ⁱ	109.16 (10)	C10—C11—C6		120.87 (14)
C2-C3-C2 ⁱ	104.54 (14)	C10-C11-H11		119.6
C3—C4—H4A	109.5	C6—C11—H11		119.6
C3—C4—H4B	109.5	O2—C12—O3		123.34 (14)
H4A—C4—H4B	109.5	O2—C12—C9		123.79 (14)
C3—C4—H4C	109.5	O3—C12—C9		112.87 (13)
Н4А—С4—Н4С	109.5	O3—C13—H13A		109.5
H4B—C4—H4C	109.5	O3—C13—H13B		109.5
O1—C5—C6	118.40 (14)	H13A—C13—H13B		109.5
O1—C5—C3	120.05 (15)	O3—C13—H13C		109.5
C6—C5—C3	121.55 (14)	H13A—C13—H13C		109.5
C7—C6—C11	118.66 (14)	H13B—C13—H13C		109.5
C7—C6—C5	124.69 (13)	C12—O3—C13		114.69 (14)
C1 ⁱ —C1—C2—C3	10.60 (11)	C5—C6—C7—C8		180.0
C1—C2—C3—C5	-138.49 (12)	C6—C7—C8—C9		0.0
C1—C2—C3—C4	100.59 (14)	C7—C8—C9—C10		0.0
C1-C2-C3-C2 ⁱ	-16.10 (17)	C7—C8—C9—C12		180.0
C4—C3—C5—O1	0.0	C8—C9—C10—C11		0.0
C2—C3—C5—O1	-121.11 (10)	C12—C9—C10—C11		180.0
C2 ⁱ —C3—C5—O1	121.11 (10)	C9—C10—C11—C6		0.0
C4—C3—C5—C6	180.0	C7—C6—C11—C10		0.0
C2—C3—C5—C6	58.89 (10)	C5-C6-C11-C10		180.0
C2 ⁱ —C3—C5—C6	-58.89 (10)	C10—C9—C12—O2		0.0
O1—C5—C6—C7	180.0	C8—C9—C12—O2		180.0
C3—C5—C6—C7	0.0	C10—C9—C12—O3		180.0
O1-C5-C6-C11	0.0	C8—C9—C12—O3		0.0
C3—C5—C6—C11	180.0	O2—C12—O3—C13		0.0
C11—C6—C7—C8	0.0	C9—C12—O3—C13		180.0
Symmetry codes: (i) x , $-y+1/2$, z .				
Hydrogen-bond geometry $(\hat{A} \circ)$				
П_H…4	ת	_Н Ч <i>1</i>	D 4	л_н и
C_{12} U_{12} C_{12}	0.0	5 2 <i>1</i> 5	2 330(2)	153
UI3—III3A…OI	0.90	2.43	5.557 (2)	155

Symmetry codes: (ii) x, y, z-1.

